Single-step pathway for synthesis of glucosylglycerate in Persephonella marina.

نویسندگان

  • Chantal Fernandes
  • Nuno Empadinhas
  • Milton S da Costa
چکیده

A single-step pathway for the synthesis of the compatible solute glucosylglycerate (GG) is proposed based on the activity of a recombinant glucosylglycerate synthase (Ggs) from Persephonella marina. The corresponding gene encoded a putative glycosyltransferase that was part of an operon-like structure which also contained the genes for glucosyl-3-phosphoglycerate synthase (GpgS) and glucosyl-3-phosphoglycerate phosphatase (GpgP), the enzymes that lead to the synthesis of GG through the formation of glucosyl-3-phosphoglycerate. The putative glucosyltransferase gene was expressed in Escherichia coli, and the recombinant product catalyzed the synthesis of GG in one step from ADP-glucose and d-glycerate, with K(m) values at 70 degrees C of 1.5 and 2.2 mM, respectively. This glucosylglycerate synthase (Ggs) was also able to use GDP- and UDP-glucose as donors to form GG, but the efficiencies were lower. Maximal activity was observed at temperatures between 80 and 85 degrees C, and Mg(2+) or Ca(2+) was required for catalysis. Ggs activity was maximal and remained nearly constant at pH values between 5.5 and pH 8.0, and the half-lives for inactivation were 74 h at 85 degrees C and 8 min at 100 degrees C. This is the first report of an enzyme catalyzing the synthesis of GG in one step and of the existence of two pathways for GG synthesis in the same organism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon isotopic fractionations associated with thermophilic bacteria Thermotoga maritima and Persephonella marina.

Stable carbon isotopes can provide insight into carbon cycling pathways in natural environments. We examined carbon isotope fractionations associated with a hyperthermophilic fermentative bacterium, Thermotoga maritima, and a thermophilic chemolithoautotrophic bacterium Persephonella marina. In T. maritima, phospholipid fatty acids (PLFA) are slightly enriched in 13C relative to biomass (epsilo...

متن کامل

Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents.

Two thermophilic, strictly chemolithoautotrophic, microaerophilic, hydrogen-oxidizing members of the Bacteria designated strain EX-H1T and strain EX-H2T were isolated from two separate deep-sea hydrothermal vent sites at 9 degrees N 104 degrees W in the Pacific Ocean and Guaymas Basin. The motile 2-4-microm-long rods were Gram-negative and non-sporulating. The temperature range for growth was b...

متن کامل

Synthesis of CuO nanorods via thermal decomposition of copper-dipicolinic acid complex

Template-free CuO nanorods were synthesized through a three-step chemical method with no water-insoluble materials. The first step included the preparation of a Cu-complex, which was obtained from dipicolinic acid, L-lysine, and copper nitrate. Then, as the second step, the obtained solution was allowed to be relaxed for a week to and formation of some blue single-crystals single crystals, whic...

متن کامل

Effect of crude oil contamination on biomass and chlorophyll biosynthetic pathway pigments and elements content of Avicennia marina seedling

Mangrove ecosystems of Iran, located in the shores of the Persian Gulf, near one of the busiest oil shipping routes, are exposed to petroleum pollution. To assess the effects of petroleum contamination of sediments on morphophysiological characteristics of mangrove (Avecennia marina) seedlings, a randomized block factorial experiment was conducted with three replicates. Biomass and pigment cont...

متن کامل

Mycobacterium hassiacum recovers from nitrogen starvation with up-regulation of a novel glucosylglycerate hydrolase and depletion of the accumulated glucosylglycerate

Some microorganisms accumulate glucosylglycerate (GG) during growth under nitrogen deprivation. However, the molecular mechanisms underlying the role of GG and the regulation of its levels in the nitrogen stress response are elusive. Since GG is required for biosynthesis of mycobacterial methylglucose lipopolysaccharides (MGLP) we examined the molecular mechanisms linking replenishment of assim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 11  شماره 

صفحات  -

تاریخ انتشار 2007